
Week 9 - Friday



 What did we talk about last time?
 Reading and writing text files
 Error handling







 Prompt the user for an input file name
 If the file isn't accessible, prompt the user to enter the name 

again
 Read in all the integers in this file (until you run out)
 Close the file
 Store all the values in an ArrayList<Integer>
 Sort them
 Find the mode (the value that appears the most)





 Technically, all files are binary files
 They all carry data stored in binary

 But some of those binary files are called text files because 
they are filled with human readable text

 When most people talk about binary files, they mean files 
with data that is only computer readable



 Wouldn't it be easier to use all 
human readable files?

 Binary files can be more efficient
 In binary, all int values are 4 bytes

 In text, they can take up a lot 
more

 In text, you also need a space or 
other separator to divide the 
numbers

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11



 Because they have a representation that is more compact 
(and more similar to how data is stored in your program), 
most files are binary (non-human-readable) files

 Many media files start with metadata
 Format information
 Size

 Then, they have the actual data (RGB values, audio samples, 
frames of video, etc.)

 Binary files include most common file formats: .jpg, .png, 
.mp3, .avi, .pdf, .docx, .pptx, and on and on



 Reading from binary files uses a completely different set of 
objects than reading from text files

 We create a DataInputStream from a FileInputStream
 The FileInputStream takes the name of the file path

 You can create a FileInputStream first on a separate line, 
but there's no need to do so

DataInputStream in = new DataInputStream(new
FileInputStream("input.dat"));



 Typically, we will read in individual pieces of data in binary from a DataInputStream

Return Type Method Use

boolean readBoolean() Read a single boolean

byte readByte() Read a single byte

char readChar() Read a single char

double readDouble() Read a single double

float readFloat() Read a single float

int readInt() Read a single int

long readLong() Read a single long

short readShort() Read a single short

int read(byte[] array) Read byte values into array, return the number read

int skipBytes(int n) Skip at most n bytes in the stream, return the number skipped



 The following code assumes that a file contains starts with an int
value giving the number of double values that come after it

DataInputStream in = null;
try {

in = new DataInputStream(new FileInputStream("numbers.dat"));
int length = in.readInt();
double sum = 0.0;
for(int i = 0; i < length; ++i)

sum += in.readDouble();
System.out.println("Sum: " + sum);

}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ in.close(); } catch(Exception e){}
}



 The reading methods in DataInputStream can throw:
 EOFException if the end of the file was reached but you still try to 

read something
 IOException if the stream was closed (or something else goes 

wrong)
 Since EOFException and even 
FileNotFoundException are both children of 
IOException, it's possible (as we did on the previous slide) 
to have a single catch block that handles an IOException



 As with text files, we closed our files in a finally block
 You might have noticed that there was a baby try-catch block inside of there 

as well

 For whatever reason, closing a DataInputStream can throw an 
IOException

 By having a try-catch that will catch anything, we deal with the 
IOException as well as catching the NullPointerException that 
happens if we try to close a null DataInputStream

 Is that a good idea?
 Eh…it's fine: We're just trying to close the file and not crash our program

finally {
try{ in.close(); } catch(Exception e){}

}



 Writing to binary files is very similar to reading from binary 
files

 We create a DataOutputStream from a 
FileOutputStream

 The FileOutputStream takes the name of the file path

 The writing methods are similar too

DataOutputStream out = new DataOutputStream(new
FileOutputStream("output.dat"));



 Typically, we will write out individual pieces of data in binary with a DataOutputStream

ReturnType Method Use

void writeBoolean(boolean value) Write a single boolean

void writeByte(byte value) Write a single byte

void writeChar(int value) Write a single char

void writeDouble(double value) Write a single double

void writeFloat(float value) Write a single float

void writeInt(int value) Write a single int

void writeLong(long value) Write a single long

void writeShort(int value) Write a single short

void write(byte[] values) Write all the byte values from values



 The following code assumes that a file starts with an int value 
giving the number of double values that come after it

DataOutputStream out = null;
try {
out = new DataOutputStream(new FileOutputStream("numbers.dat"));
out.writeInt(100);
for(int i = 0; i < 100; ++i)

out.writeDouble(Math.random() * 1000);
}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ out.close(); } catch(Exception e){}
}



 File input and output need to match each other well, 
especially for binary I/O

 If data values are out of order, you'll get garbage, and it'll be 
hard to know why

 Once you write the file output code, you can easily copy and 
paste it to write the input code
 Change every out to in
 Change every write to read (and move the method arguments to 

save return values)
 The structures are parallel



 Write a program that:
 Prompts the user for a file name
 Opens the file as a text file
 Writes the first 1,000 perfect cubes: 1, 8, 27, 64, etc. as text
 Closes the file

 Write a second, similar program that:
 Prompts the user for a file name
 Opens the file as a binary file
 Writes the first 1,000 perfect cubes: 1, 8, 27, 64, etc. in binary
 Closes the file

 What do the files look like inside?
 How do the sizes of the files compare?





 An object has data inside of it
 Each piece of data is either a reference to an object or is 

primitive data
 When reading or writing whole objects, we could read or write 

each piece of data separately
 But doing so is challenging because we could forget some 

data
 And because there could be circular references:
 Object A might have a reference to object B which might have a 

reference to object A again…



 If only there was some magical way to read or write a whole object 
at once…

 There is!
 It's called serialization
 Serialization takes a reference to an object and dumps it into a file
 It writes representations to primitive types pretty much the same 

way that a DataOutputStream does
 And if there're objects inside of the object you're serializing, it 

serializes them too
 And! Serialization makes a note of all the objects that are getting 

serialized, so if it sees an object a second time, it just writes down 
a serial number for it instead of the whole thing



 Serialization is one of the closest things to magic you'll see in 
programming

 You only need to implement the Serializable interface 
on your object
 And the Serializable interface has no methods!

 It's just a way of marking an object as reasonable to try to 
dump into a file

 Most objects are reasonable to dump into a file!



 Here's a class we might want to be able to dump into a file

public class Troll implements Serializable {
private String name;
private int age;
private Object hatedThing; // All trolls hate something
public Troll(String name, int age, Object hatedThing) {

this.name = name;
this.age = age;
this.hatedThing = hatedThing;

}
public Object getHatedThing() {

return hatedThing;
}

}



 To write an object marked Serializable, you need to create an 
ObjectOutputStream

 You create an ObjectOutputStream the same way that you create a 
DataOutputStream, by passing in a FileOutputStream
 At this point, you might be wondering why all these objects take 
FileOutputStream objects and can't take just take a File object or even a file 
name

 In actuality, you can pass in any OutputStream object (of which 
FileOutputStream is a child), like maybe one that sends the data across the 
network instead of storing it into a file

 An ObjectOutputStream object has many methods, but the only one that 
matters is  writeObject()

 Pass your object to that method and it'll get written out in its totality, no fuss



 Here's some code that creates a couple of Troll objects and 
then writes them to a file called trolls.dat

Troll tom = new Troll("Tom", 351, "Bilbo Baggins");
Troll bert = new Troll("Bert", 417, tom);
ObjectOutputStream out = null;
try {

out = new ObjectOutputStream(new FileOutputStream("trolls.dat"));
out.writeObject(tom);
out.writeObject(bert);

}
catch(IOException e) {

System.out.println("Serialization failed.");
}
finally { try{ out.close(); } catch(Exception e){} }



 To read objects that have been serialized to a file, you need to 
create an ObjectInputStream

 You create an ObjectOutputStream the same way that 
you create a DataInputStream, by passing in a 
FileInputStream

 For each object serialized, you call the readObject()
method to restore it from the file

 Note that readObject() has a return type of Object, so 
you'll need to cast your object if you want to store it in a 
reference of its own type



 Here's some code that reads in the Troll objects we 
serialized in the previous example

Troll tom = null;
Troll bert = null;
ObjectInputStream in = null;
try {

in = new ObjectInputStream(new FileInputStream("trolls.dat"));
tom = (Troll)in.readObject();
bert = (Troll)in.readObject();

}
catch(IOException e) {

System.out.println("Deserialization failed.");
}
finally { try{ in.close(); } catch(Exception e){} }



 Serialization allows you to read or write objects (even 
complex objects) or arrays of objects in a single line of code

 It's an impressive achievement of Java
 To make your own classes serializable, all you have to do is 

mark them with the Serializable interface
 An interface with no methods!

 It more or less works like magic!



 Some objects are not serializable, but they are comparatively 
rare

 An example is the Thread class, which encapsulates the 
state of a currently running thread…so how could you store it 
on disk?

 Serialization does have storage overhead needed to keep 
track of the size of arrays and type information about classes
 You might be able to use less space if you stored the data directly



 If you forget to mark one of your classes Serializable, it 
will crash your code when you try to write it out, even 
indirectly

 If you serialize objects to a file but later change the class, 
adding or removing members or methods, you will no longer 
be able to read those objects back from the file

 Their data in the file will no longer match what the class is 
supposed to look like

 This problem can happen with different versions of the same 
program





 Networking basics:
 IP addresses
 Ports
 Sockets



 Work on Project 3
 Form teams if you haven't!
 Project 3 is now due on April 3

 Read Chapter 21


	COMP 2000
	Last time
	Questions?
	Project 3
	More file practice
	Binary Files
	What is a binary file?
	Why use binary files?
	Most files are binary files
	Reading binary files
	Reading data
	Example summing double values
	Error handling
	Closing the file
	Writing binary files
	Writing data
	Example writing double values
	Putting the I/O together
	Comparison of binary and text files
	Reading and Writing Whole Objects
	What if I wanted to read or write a whole object?
	Serialization
	Serializable interface
	Example Serializable class
	Writing using serialization
	Example of writing
	Reading using serialization
	Example of reading
	The good
	The bad
	The ugly
	Upcoming
	Next time…
	Reminders

