
Week 9 - Friday



 What did we talk about last time?
 Reading and writing text files
 Error handling







 Prompt the user for an input file name
 If the file isn't accessible, prompt the user to enter the name 

again
 Read in all the integers in this file (until you run out)
 Close the file
 Store all the values in an ArrayList<Integer>
 Sort them
 Find the mode (the value that appears the most)





 Technically, all files are binary files
 They all carry data stored in binary

 But some of those binary files are called text files because 
they are filled with human readable text

 When most people talk about binary files, they mean files 
with data that is only computer readable



 Wouldn't it be easier to use all 
human readable files?

 Binary files can be more efficient
 In binary, all int values are 4 bytes

 In text, they can take up a lot 
more

 In text, you also need a space or 
other separator to divide the 
numbers

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11



 Because they have a representation that is more compact 
(and more similar to how data is stored in your program), 
most files are binary (non-human-readable) files

 Many media files start with metadata
 Format information
 Size

 Then, they have the actual data (RGB values, audio samples, 
frames of video, etc.)

 Binary files include most common file formats: .jpg, .png, 
.mp3, .avi, .pdf, .docx, .pptx, and on and on



 Reading from binary files uses a completely different set of 
objects than reading from text files

 We create a DataInputStream from a FileInputStream
 The FileInputStream takes the name of the file path

 You can create a FileInputStream first on a separate line, 
but there's no need to do so

DataInputStream in = new DataInputStream(new
FileInputStream("input.dat"));



 Typically, we will read in individual pieces of data in binary from a DataInputStream

Return Type Method Use

boolean readBoolean() Read a single boolean

byte readByte() Read a single byte

char readChar() Read a single char

double readDouble() Read a single double

float readFloat() Read a single float

int readInt() Read a single int

long readLong() Read a single long

short readShort() Read a single short

int read(byte[] array) Read byte values into array, return the number read

int skipBytes(int n) Skip at most n bytes in the stream, return the number skipped



 The following code assumes that a file contains starts with an int
value giving the number of double values that come after it

DataInputStream in = null;
try {

in = new DataInputStream(new FileInputStream("numbers.dat"));
int length = in.readInt();
double sum = 0.0;
for(int i = 0; i < length; ++i)

sum += in.readDouble();
System.out.println("Sum: " + sum);

}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ in.close(); } catch(Exception e){}
}



 The reading methods in DataInputStream can throw:
 EOFException if the end of the file was reached but you still try to 

read something
 IOException if the stream was closed (or something else goes 

wrong)
 Since EOFException and even 
FileNotFoundException are both children of 
IOException, it's possible (as we did on the previous slide) 
to have a single catch block that handles an IOException



 As with text files, we closed our files in a finally block
 You might have noticed that there was a baby try-catch block inside of there 

as well

 For whatever reason, closing a DataInputStream can throw an 
IOException

 By having a try-catch that will catch anything, we deal with the 
IOException as well as catching the NullPointerException that 
happens if we try to close a null DataInputStream

 Is that a good idea?
 Eh…it's fine: We're just trying to close the file and not crash our program

finally {
try{ in.close(); } catch(Exception e){}

}



 Writing to binary files is very similar to reading from binary 
files

 We create a DataOutputStream from a 
FileOutputStream

 The FileOutputStream takes the name of the file path

 The writing methods are similar too

DataOutputStream out = new DataOutputStream(new
FileOutputStream("output.dat"));



 Typically, we will write out individual pieces of data in binary with a DataOutputStream

ReturnType Method Use

void writeBoolean(boolean value) Write a single boolean

void writeByte(byte value) Write a single byte

void writeChar(int value) Write a single char

void writeDouble(double value) Write a single double

void writeFloat(float value) Write a single float

void writeInt(int value) Write a single int

void writeLong(long value) Write a single long

void writeShort(int value) Write a single short

void write(byte[] values) Write all the byte values from values



 The following code assumes that a file starts with an int value 
giving the number of double values that come after it

DataOutputStream out = null;
try {
out = new DataOutputStream(new FileOutputStream("numbers.dat"));
out.writeInt(100);
for(int i = 0; i < 100; ++i)

out.writeDouble(Math.random() * 1000);
}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ out.close(); } catch(Exception e){}
}



 File input and output need to match each other well, 
especially for binary I/O

 If data values are out of order, you'll get garbage, and it'll be 
hard to know why

 Once you write the file output code, you can easily copy and 
paste it to write the input code
 Change every out to in
 Change every write to read (and move the method arguments to 

save return values)
 The structures are parallel



 Write a program that:
 Prompts the user for a file name
 Opens the file as a text file
 Writes the first 1,000 perfect cubes: 1, 8, 27, 64, etc. as text
 Closes the file

 Write a second, similar program that:
 Prompts the user for a file name
 Opens the file as a binary file
 Writes the first 1,000 perfect cubes: 1, 8, 27, 64, etc. in binary
 Closes the file

 What do the files look like inside?
 How do the sizes of the files compare?





 An object has data inside of it
 Each piece of data is either a reference to an object or is 

primitive data
 When reading or writing whole objects, we could read or write 

each piece of data separately
 But doing so is challenging because we could forget some 

data
 And because there could be circular references:
 Object A might have a reference to object B which might have a 

reference to object A again…



 If only there was some magical way to read or write a whole object 
at once…

 There is!
 It's called serialization
 Serialization takes a reference to an object and dumps it into a file
 It writes representations to primitive types pretty much the same 

way that a DataOutputStream does
 And if there're objects inside of the object you're serializing, it 

serializes them too
 And! Serialization makes a note of all the objects that are getting 

serialized, so if it sees an object a second time, it just writes down 
a serial number for it instead of the whole thing



 Serialization is one of the closest things to magic you'll see in 
programming

 You only need to implement the Serializable interface 
on your object
 And the Serializable interface has no methods!

 It's just a way of marking an object as reasonable to try to 
dump into a file

 Most objects are reasonable to dump into a file!



 Here's a class we might want to be able to dump into a file

public class Troll implements Serializable {
private String name;
private int age;
private Object hatedThing; // All trolls hate something
public Troll(String name, int age, Object hatedThing) {

this.name = name;
this.age = age;
this.hatedThing = hatedThing;

}
public Object getHatedThing() {

return hatedThing;
}

}



 To write an object marked Serializable, you need to create an 
ObjectOutputStream

 You create an ObjectOutputStream the same way that you create a 
DataOutputStream, by passing in a FileOutputStream
 At this point, you might be wondering why all these objects take 
FileOutputStream objects and can't take just take a File object or even a file 
name

 In actuality, you can pass in any OutputStream object (of which 
FileOutputStream is a child), like maybe one that sends the data across the 
network instead of storing it into a file

 An ObjectOutputStream object has many methods, but the only one that 
matters is  writeObject()

 Pass your object to that method and it'll get written out in its totality, no fuss



 Here's some code that creates a couple of Troll objects and 
then writes them to a file called trolls.dat

Troll tom = new Troll("Tom", 351, "Bilbo Baggins");
Troll bert = new Troll("Bert", 417, tom);
ObjectOutputStream out = null;
try {

out = new ObjectOutputStream(new FileOutputStream("trolls.dat"));
out.writeObject(tom);
out.writeObject(bert);

}
catch(IOException e) {

System.out.println("Serialization failed.");
}
finally { try{ out.close(); } catch(Exception e){} }



 To read objects that have been serialized to a file, you need to 
create an ObjectInputStream

 You create an ObjectOutputStream the same way that 
you create a DataInputStream, by passing in a 
FileInputStream

 For each object serialized, you call the readObject()
method to restore it from the file

 Note that readObject() has a return type of Object, so 
you'll need to cast your object if you want to store it in a 
reference of its own type



 Here's some code that reads in the Troll objects we 
serialized in the previous example

Troll tom = null;
Troll bert = null;
ObjectInputStream in = null;
try {

in = new ObjectInputStream(new FileInputStream("trolls.dat"));
tom = (Troll)in.readObject();
bert = (Troll)in.readObject();

}
catch(IOException e) {

System.out.println("Deserialization failed.");
}
finally { try{ in.close(); } catch(Exception e){} }



 Serialization allows you to read or write objects (even 
complex objects) or arrays of objects in a single line of code

 It's an impressive achievement of Java
 To make your own classes serializable, all you have to do is 

mark them with the Serializable interface
 An interface with no methods!

 It more or less works like magic!



 Some objects are not serializable, but they are comparatively 
rare

 An example is the Thread class, which encapsulates the 
state of a currently running thread…so how could you store it 
on disk?

 Serialization does have storage overhead needed to keep 
track of the size of arrays and type information about classes
 You might be able to use less space if you stored the data directly



 If you forget to mark one of your classes Serializable, it 
will crash your code when you try to write it out, even 
indirectly

 If you serialize objects to a file but later change the class, 
adding or removing members or methods, you will no longer 
be able to read those objects back from the file

 Their data in the file will no longer match what the class is 
supposed to look like

 This problem can happen with different versions of the same 
program





 Networking basics:
 IP addresses
 Ports
 Sockets



 Work on Project 3
 Form teams if you haven't!
 Project 3 is now due on April 3

 Read Chapter 21
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